

# CHALLENGES IN AI/ML FOR SAFETY CRITICAL SYSTEMS RICCARDO MARIANI | VP, INDUSTRY SAFETY | OCTOBER 3, 2019

## **A BRIEF HISTORY OF AI**



# WHAT IS A DEEP NEURAL NETWORK (DNN)

## An Algorithm that Learns from Data



# **ARTIFICIAL NEURAL NETWORK**

# A collection of simple, trainable mathematical units that collectively learn complex functions

Hidden layers



Given sufficient training data an artificial neural network can approximate very complex functions mapping raw data to output decisions

# **HOW IT WORKS**



# SMART MACHINES

Definition

A smart machine is a device embedded with:

- Machine-to-machine (M2M)
- Human-to-machine (H2M), and
- Cognitive computing technologies such as artificial intelligence (AI), machine learning (ML) or deep learning (DL), implemented with Deep Neural Networks (DNN)

= all of which it uses to **reason**, **problem-solve**, **make decisions** and ultimately, even **take action**.

## **EXAMPLES OF SMART MACHINES**



Cars



Robotaxis



Trucks









**Delivery Vans** 

Buses

Tractors

# **NEURAL NETWORKS IN AUTOMOTIVE**



- Research from early 1990s
- Used for:
  - Misfire detection
  - Air/fuel mixture optimization
  - Fuel canister purge
  - Dynamic suspension control
- Ford licensed neural network IP from JPL in 1998 for powertrain.

## MANY THINGS TO LEARN













## SIMULTANEOUS DEEP NEURAL NETWORKS





## DEPENDABILITY OF SMART MACHINES Definitions



## SAFETY OF SMART MACHINES

### Abstracting Safety in Layers



from SafeLog project [1]

# SAFETY OF SMART MACHINES

What we need to avoid or mitigate....



# FUNCTIONAL SAFETY (FUSA)

Definition

The absence of *unreasonable* risk due to hazards caused by malfunctioning behavior of electric/electronic (E/E) systems

## Systematic failures

Bugs in S/W, H/W design and Tools

## Random H/W failures

Permanent and transient faults occurring while using the system due to aging effects, electromigration, soft errors, ...

## **FUSA INTERNATIONAL STANDARDS**

### **ISO 26262**

Source: ISO 26262 2<sup>nd</sup> edition

|                                                                                                                                                                                                                                                                                 | 1. Vocabulary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                 | 2. Management of functional safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |
| 2-5 Overall safety management                                                                                                                                                                                                                                                   | 2-6 Safety management during the concept phase and the product development operation, ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nagement during production,<br>vice and decommissioning                                                                                                                                  |
| 3. Concept phase         3-5 Item definition         3-6 Hazard analysis and risk assessment         3-7 Functional safety concept                                                                                                                                              | 4. Product development at the system level         4-5 General topics for the product<br>development at the system level         4-9 Safety validation         4-8 Technical safety concept         4-8 Technical safety concept         4-7 System architectural design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. Production, operation,<br>service and<br>decommissioning<br>7-5 Planning for production,<br>operation, service and<br>decommissioning<br>7-6 Production<br>7-7 Operation, service and |
| 12. Adaptation of ISO 26262<br>for motorcycles         12-5 Confirmation measures         12-6 Hazard analysis and risk<br>assessment         12-7 Vehicle integration and testing         12-8 Safety validation                                                               | <ul> <li>5. Product development at the hardware level</li> <li>6. Product development at the software level</li> <li>6. Software level</li> <li>6. Software level</li> <li>6. Software level</li> <li>6. Specification of hardware level</li> <li>6. Specification of hardware level</li> <li>6. Specification of software safety requirements</li> <li>6. Software architectural design</li> <li>6. Software unit design and implementation</li> <li>6. Software integration and verification</li> <li>6. Software software integration and verification</li> <li>6. Software</li> </ul> | decommissioning                                                                                                                                                                          |
| <ul> <li>8-5 Interfaces within distributed developments</li> <li>8-7 Configuration and management</li> <li>8-7 Configuration management</li> <li>8-8 Change management</li> <li>9-5 Requirements decomposition with</li> <li>9-6 Criteria for coexistence of element</li> </ul> | 8. Supporting processes         opments         Safety         8-10 Documentation management         8-11 Confidence in the use of software tools         8-12 Qualification of software components         8-13 Evaluation of hardware elements         9. ASIL-oriented and safety-oriented analyses         respect to ASIL tailoring         ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se argument<br>a base vehicle or item in an<br>f scope of ISO 26262<br>of safety related systems not<br>ding to ISO 26262                                                                |
|                                                                                                                                                                                                                                                                                 | 10. Guideline on ISO 26262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                          |
| <u> </u>                                                                                                                                                                                                                                                                        | 11. Guidenne on application of 150 20202 to semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                                                                                                                                                                                        |

16 💿 💿 🔂 16

# FUSA WORKFLOW

### From Item Definition to H/W, S/W Requirements



# **V MODEL**

### From Requirements to Verification and Validation



## **HW RANDOM FAILURES**

### **Failures Classification**



Source: ISO 26262 2<sup>nd</sup> edition

# ISO 26262 QUANTITATIVE TARGETS

### For HW Random Failures

| ASIL | SPFM | LFM   | PMHF                     |         |
|------|------|-------|--------------------------|---------|
| А    |      |       | < 10 <sup>-6</sup>       |         |
| В    | ≥90% | ≥ 60% | < 10 <sup>-7</sup>       |         |
| С    | ≥97% | ≥80%  | < 10 <sup>-7</sup>       |         |
| D    | ≥99% | ≥90%  | $< 10^{-8} = 10$ FIT (1) | I FIT = |

#### SPFM = Single Point Fault Metric

• Robustness of the item to single-point and residual faults either by coverage from safety mechanisms or by design (primarily safe faults).

#### LFM = Latent Fault Metric

 Robustness of the item to latent faults either by coverage of faults in safety mechanisms or by the driver recognizing that the fault exists before the violation of the safety goal, or by design (primarily safe faults).

#### • PMHF = Probabilistic Metric for random Hardware Failures

• Basically the remaining portion of residual and single point failures.

 $10^{-9}$ )

## **QUANTIFYING RESIDUAL FAILURES**

Simplified Formula and Example for a RAM

$$\lambda_{RF} \approx \lambda \times (1 - F_{safe}) \times (1 - K_{RF})$$
  
so called  
"Diagnostic Coverage"

Example:

- RAM failure rate for soft errors = 0.0001 FIT / bit
- 128Mbit RAM failure rate =  $128 \times 1024 \times 1024 \times 0.0001 \cong 13422$  FIT
- Assuming 10% unused (F<sub>safe</sub>= 0.1)
- Assuming SEC-DED ECC ( $K_{RF} = 0.999$ )
- Residual failures (soft errors only) =  $13422 \times 0.9 \times 0.001 \cong 12$  FIT

## THE FAILURE RATE CHALLENGE

Modern technologies have complex failure mechanisms

Example from ISO 26262-11 (derived from former IEC/TR 62380):



Source: ISO 26262 2<sup>nd</sup> edition

## THE FAILURE RATE CHALLENGE

### The end of bath tube reliability curve



# **VULNERABILITY FACTORS**

## Used to Estimate F<sub>safe</sub>

$$SER^{derated} = \sum_{UCs} F_{UC}(V, f_{clk}) * \sum_{circuits/nodes} SER^{nominal} * TVF * AVF * PVF$$

#### AVF = Architectural Vulnerability Factor

- Function of micro-architecture & workload
- Affects all logic uArch structures, sequential state, static logic.
- TVF = Timing Vulnerability Factor
  - Function of clocking, circuit behavior & workload
  - Affects primarily sequential state.
- PVF = Program Vulnerability Factor
  - Function of final user observable program output.

| Integer          | ACE IPC | ACE Latency | # ACE | AVF |
|------------------|---------|-------------|-------|-----|
| Benchmarks       |         | (cycles)    | Inst  |     |
| bzip2-source     | 0.55    | 22          | 12    | 19% |
| cc-200           | 0.57    | 18          | 10    | 16% |
| crafty           | 0.37    | 15          | 6     | 9%  |
| eon-kajiya       | 0.36    | 20          | 7     | 11% |
| gap              | 0.78    | 17          | 13    | 21% |
| gzip-graphic     | 0.60    | 13          | 8     | 12% |
| mcf              | 0.25    | 68          | 17    | 26% |
| parser           | 0.49    | 24          | 12    | 19% |
| perlbmk-makerand | 0.38    | 17          | 7     | 10% |
| twolf            | 0.30    | 27          | 8     | 13% |
| vortex_lendian3  | 0.42    | 22          | 9     | 15% |
| vpr-route        | 0.35    | 12          | 4     | 7%  |
|                  |         |             |       |     |
|                  |         |             |       |     |
| average          | 0.45    | 23          | 9     | 15% |

Source: Shubhendu S. Mukherjee related works.

## **QUANTITATIVE ANALYSIS**

Combining FMEA/FMEDA with quantitative analysis

Source: ISO 26262 2<sup>nd</sup> edition

|          |          | -                    |                                                              |                 | _        |                    |                                    | -                                                               | Permai                                              | <u>nent failure</u>                                  | 25                                              |                                               |                                                   |                    | Iran                               | <u>sient ta</u>                                                 | lures                                                  |                                                      |
|----------|----------|----------------------|--------------------------------------------------------------|-----------------|----------|--------------------|------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Part     | Sub-part | Elementary sub-parts | Safety Related Component ?<br>Not Safety-Related Component ? | Failure modes   |          | Failure rate (FIT) | Amount of safe faults (see note 1) | Safety mechanism(s) preventing the violation of the safety goal | Failure mode coverage wrt. violation of safety goal | Residual or Single Point Fault<br>failure rate / FIT | Safety mechanism(s) preventing<br>latent faults | Failure mode coverage wrt.<br>Latent failures | Latent Multiple Point Fault<br>failure rate / FIT | Failure rate (FIT) | Amount of safe faults (see note 1) | Safety mechanism(s) preventing the violation of the safety goal | Failure mode coverage wrt. violation of<br>safety goal | Residual or Single Point Fault<br>failure rate / FIT |
|          |          | RAM data bits        | SR                                                           | permanent fault |          | 1.5000             | 0%                                 | SM3                                                             | 96.9%                                               | 0.04688                                              | SM3                                             | 100%                                          | 0.00000                                           |                    |                                    |                                                                 |                                                        |                                                      |
|          |          |                      |                                                              | transient fault |          |                    |                                    |                                                                 |                                                     |                                                      |                                                 |                                               |                                                   | 131.072            | 0%                                 | SM3                                                             | 99.69%                                                 | 0.40894                                              |
| Volatile |          | Address Decoder      | SR                                                           | permanent fault |          | 0.0087             | 0%                                 | none                                                            | 0%                                                  | 0.00870                                              |                                                 |                                               |                                                   |                    |                                    |                                                                 |                                                        |                                                      |
| wemory   | (10KB)   |                      |                                                              | transient fault | -        | 0.0050             | 500/                               |                                                                 | 00/                                                 | 0.00000                                              |                                                 |                                               |                                                   | 0.000335           | 0%                                 | none                                                            | 0%                                                     | 0.00034                                              |
|          |          | Test/redundancy      | SR                                                           | permanent fault | 1        | 0.0058             | 50%                                | none                                                            | 0%                                                  | 0.00290                                              |                                                 |                                               |                                                   | 0.00022            | 0.0%                               |                                                                 | 09/                                                    | 0.00002                                              |
|          |          |                      |                                                              | transient laut  | ן ד<br>ו |                    |                                    |                                                                 |                                                     | 0.05848                                              |                                                 |                                               | 0.00000                                           | 0.00033            | 90%                                | none                                                            | 076                                                    | 0.00003                                              |
|          |          |                      |                                                              |                 | -        |                    |                                    |                                                                 |                                                     | 0.000-0                                              |                                                 |                                               | 0.00000                                           |                    |                                    |                                                                 |                                                        | 3.40331                                              |
|          |          | Total failu          | re rate                                                      | 1               |          | 1.51450            |                                    |                                                                 |                                                     |                                                      |                                                 | Total                                         | failure rate                                      | 131.07             | ,                                  |                                                                 |                                                        |                                                      |
|          |          | Total Safety F       | Related                                                      | l               |          | 1.51450            |                                    |                                                                 |                                                     |                                                      | То                                              | tal Safe                                      | ety Related                                       | 131.07             | ,                                  |                                                                 |                                                        |                                                      |
|          |          | Total Not Safety F   | Related                                                      | l               |          | 0.00000            |                                    |                                                                 |                                                     |                                                      | Total N                                         | lot Safe                                      | ety Related                                       | 0.00               | )                                  |                                                                 |                                                        |                                                      |

Single Point Faults Metric 96.1%

Single Point Faults Metric 99.69%

Latent Faults Metric 100.0%

# **EXAMPLES OF FAILURE MODES**

## guidelines in ISO 26262-5 and ISO 26262-11

#### Source: ISO 26262 2<sup>nd</sup> edition

| Element              | See<br>tables                                 | Analysed failure modes           |  |  |  |  |  |
|----------------------|-----------------------------------------------|----------------------------------|--|--|--|--|--|
| Communication        |                                               |                                  |  |  |  |  |  |
|                      |                                               | Loss of communication peer       |  |  |  |  |  |
|                      |                                               | Message corruption               |  |  |  |  |  |
|                      | D.6 — Communication<br>bus (serial, parallel) | Message unacceptable delay       |  |  |  |  |  |
| Data transmission    |                                               | Message loss                     |  |  |  |  |  |
| (to be analysed with |                                               | Unintended message repetition    |  |  |  |  |  |
| D.2.4)               |                                               | Incorrect sequencing of messages |  |  |  |  |  |
|                      |                                               | Message insertion                |  |  |  |  |  |
|                      |                                               | Message masquerading             |  |  |  |  |  |
|                      |                                               | Message incorrect addressing     |  |  |  |  |  |

#### Source: ISO 26262 2<sup>nd</sup> edition

| Part/subpart                              | Function                                                               | Aspects to be considered for Failure mode <sup>a</sup>                                                                      |
|-------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                        | CPU_FM1: given instruction flow(s) not executed (total omission)                                                            |
| Central Processing                        | Execute given instruction                                              | CPU_FM2: un-intended instruction(s) flow executed (commission)                                                              |
| Unit (CPU)                                | flow according to given In-<br>struction Set Architecture.             | CPU_FM3: incorrect instruction flow timing (too early/late)                                                                 |
|                                           |                                                                        | CPU_FM4: incorrect instruction flow result                                                                                  |
|                                           |                                                                        | CPU_FM1 can be further refined if necessary into:                                                                           |
|                                           |                                                                        | <ul> <li>CPU_FM1.1: given instruction flow(s) not executed<br/>(total omission) due to program counter hang up</li> </ul>   |
|                                           |                                                                        | <ul> <li>CPU_FM1.2: given instruction flow(s) not executed<br/>(total omission) due to instruction fetch hang up</li> </ul> |
|                                           |                                                                        | CPU_INTH_FM1: ISR not executed (omission/too few)                                                                           |
| CPU Interrupt Handler                     | Execute interrupt service                                              | CPU_INTH_FM2: un-intended ISR execution (commis-<br>sion/too many)                                                          |
| circuit (CPU_INTH)                        | interrupt request                                                      | CPU_INTH_FM3: delayed ISR execution (too early/late)                                                                        |
|                                           |                                                                        | CPU_INTH_FM4: incorrect ISR execution (see CPU_<br>FM1/2/4)                                                                 |
|                                           |                                                                        | CPU_MMU_FM1: Address translation not executed                                                                               |
|                                           | The Memory Management                                                  | CPU_MMU_FM2: Address translation when not requested                                                                         |
|                                           | forms two functions:                                                   | CPU_MMU_FM3: delayed address translation                                                                                    |
| CPU Memory Manage-<br>ment Unit (CPU_MMU) | <ul> <li>translates virtual<br/>addresses into physical ad-</li> </ul> | CPU_MMU_FM4: translation with incorrect physical address                                                                    |
|                                           | dresses                                                                | CPU_MMU_FM5: un-intended blocked access                                                                                     |
|                                           | <ul> <li>Controls memory<br/>access permissions</li> </ul>             | CPU_MMU_FM6: un-intended allowed access                                                                                     |
|                                           | decess per missions.                                                   | CPU_MMU_FM7: delayed access                                                                                                 |

26

## **EXAMPLES OF SAFETY MECHANISMS**

guidelines in ISO 26262-5 and ISO 26262-11

#### Source: ISO 26262 2<sup>nd</sup> edition

| Safety mechanism/<br>measure                                                           | See overview of techniques                    | Typical diagnostic coverage<br>considered achievable | Notes                                                                                                                                             |
|----------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| One-bit hardware<br>redundancy                                                         | <u>D.2.5.1</u>                                | Low                                                  | —                                                                                                                                                 |
| Multi-bit hardware<br>redundancy                                                       | <u>D.2.5.2</u>                                | Medium                                               | —                                                                                                                                                 |
| Read back of sent<br>message                                                           | <u>D.2.5.9</u>                                | Medium                                               | —                                                                                                                                                 |
| Complete hardware<br>redundancy                                                        | <u>D.2.5.3</u>                                | High                                                 | Common mode failures can reduce diagnostic coverage                                                                                               |
| Inspection using test patterns                                                         | <u>D.2.5.4</u>                                | High                                                 | —                                                                                                                                                 |
| Transmission redun-<br>dancy                                                           | <u>D.2.5.5</u>                                | Medium                                               | Depends on type of redundancy. Ef-<br>fective only against transient faults                                                                       |
| Information redun-<br>dancy                                                            | <u>D.2.5.6</u>                                | Medium                                               | Depends on type of redundancy                                                                                                                     |
| Frame counter                                                                          | D.2.5.7                                       | Medium                                               | —                                                                                                                                                 |
| Timeout monitoring                                                                     | <u>D.2.5.8</u>                                | Medium                                               | —                                                                                                                                                 |
| Combination of infor-<br>mation redundancy,<br>frame counter and<br>timeout monitoring | <u>D.2.5.6, D.2.5.7</u><br>and <u>D.2.5.8</u> | High                                                 | For systems without hardware<br>redundancy or test patterns,<br>high coverage can be claimed for<br>the combination of these safety<br>mechanisms |

#### Source: ISO 26262 2<sup>nd</sup> edition

| Safety mechanism/<br>measure                                                                | See overview of techniques | Typical diagnostic coverage<br>considered achievable | Notes                                                                                                       |
|---------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Self-test by software: lim-<br>ited number of patterns<br>(one channel)                     | <u>D.2.3.1</u>             | Medium                                               | Depends on the quality of the self-test                                                                     |
| Self-test by software<br>cross exchange between<br>two independent units                    | <u>D.2.3.3</u>             | Medium                                               | Depends on the quality of the self-test                                                                     |
| Self-test supported by<br>hardware (one-channel)                                            | <u>D.2.3.2</u>             | Medium                                               | Depends on the quality of the self-test                                                                     |
| Software diversified re-<br>dundancy (one hardware<br>channel)                              | <u>D.2.3.4</u>             | High                                                 | Depends on the quality of the<br>diversification. Common mode<br>failures can reduce diagnostic<br>coverage |
| Reciprocal comparison by software                                                           | <u>D.2.3.5</u>             | High                                                 | Depends on the quality of the comparison                                                                    |
| HW redundancy (e.g. dual<br>core lockstep, asymmet-<br>ric redundancy, coded<br>processing) | <u>D.2.3.6</u>             | High                                                 | It depends on the quality of<br>redundancy. Common mode<br>failures can reduce diagnostic<br>coverage       |
| Configuration register test                                                                 | <u>D.2.3.7</u>             | High                                                 | Configuration registers only                                                                                |
| Stack over/under flow<br>Detection                                                          | <u>D.2.3.8</u>             | Low                                                  | Stack boundary test only                                                                                    |
| Integrated hardware con-<br>sistency monitoring                                             | <u>D.2.3.9</u>             | High                                                 | Coverage for illegal hardware exceptions only                                                               |

## SYSTEM LEVEL VS TRANSISTOR LEVEL

### Safety mechanisms: trade-offs and trends



- Industry uses safety mechanisms at different levels
  - Complexity of systems and time to market requirements are breaking the pyramid in two areas:
    - Providing an infrastructure at the lowest level (transistor level) to detect (as early as possible) degradation phenomena - e.g. in field self test, network of aging sensors etc.
    - Using those diagnostic information at the SW/algorithm and system level - with the aim of providing detection and control.

## **DEPENDENT FAILURES**

Very difficult to be quantified.... but can be very critical !



## DEPENDENT FAILURES Avoiding or detecting them

#### Source: ISO 26262 2<sup>nd</sup> edition

#### Table 22 — Dependent failures initiators due to random physical root causes

| DFI examples                                                | Short circuits (e.g.: local defects, electro migration, via migration, contact migration, oxide break down)                                                                                                              |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                             | Latch up                                                                                                                                                                                                                 |  |  |  |
|                                                             | Cross talk (substrate current, capacitive coupling)                                                                                                                                                                      |  |  |  |
|                                                             | Local heating caused e.g. by defective voltage regulators or output drivers                                                                                                                                              |  |  |  |
| Measures to prevent<br>dependent failures                   | Diversification of impact (e.g. clock delay between master & checker core, diverse master and checker core, different critical paths)                                                                                    |  |  |  |
| from violating the<br>safety goal                           | Indirect detection (e.g. cyclic self-test of a function that would fail in the case of phys-<br>ical root cause) or indirect monitoring using special sensors (e.g. delay lines used as<br>common-cause failure sensors) |  |  |  |
| Measures to prevent                                         | Dedicated production tests                                                                                                                                                                                               |  |  |  |
| the occurrence of<br>dependent failures<br>during operation | Fault avoidance measures (e.g. physical separation/isolation, corresponding de-<br>sign rules)                                                                                                                           |  |  |  |
|                                                             | Physical separation on a single chip                                                                                                                                                                                     |  |  |  |

#### Table 23 — Systematic dependent failure initiators due to environmental conditions

| DFI examples                            | Temperature                                                                                                                                                                      |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                         | Vibration                                                                                                                                                                        |  |  |  |  |  |
|                                         | Pressure                                                                                                                                                                         |  |  |  |  |  |
|                                         | Humidity/Condensation                                                                                                                                                            |  |  |  |  |  |
|                                         | Corrosion                                                                                                                                                                        |  |  |  |  |  |
|                                         | EMI                                                                                                                                                                              |  |  |  |  |  |
|                                         | Overvoltage applied from external                                                                                                                                                |  |  |  |  |  |
|                                         | Mechanical stress                                                                                                                                                                |  |  |  |  |  |
|                                         | Wear                                                                                                                                                                             |  |  |  |  |  |
|                                         | Aging                                                                                                                                                                            |  |  |  |  |  |
|                                         | Water and other fluids intrusion                                                                                                                                                 |  |  |  |  |  |
| Measures to prevent dependent failures  | Diversification of impact (e.g. clock delay between master & checker core, diverse master and checker core, different critical paths)                                            |  |  |  |  |  |
| from violating the<br>safety goal       | Direct monitoring of environmental conditions (e.g. temperature sensor) or indirect monitoring of environmental conditions (e.g. delay lines used as dependent -failure sensors) |  |  |  |  |  |
| Measures to prevent                     | Fault avoidance measures (e.g. conservative specification/robust design)                                                                                                         |  |  |  |  |  |
| the occurrence of<br>dependent failures | Physical separation (e.g. distance of the die from a local heat source external to the die)                                                                                      |  |  |  |  |  |
| during operation                        | Adaptive measures to reduce susceptibility (e.g. voltage/operating frequency decrease)                                                                                           |  |  |  |  |  |
|                                         | Limit the access frequency or limit allowed operation cycles for subparts (e.g. specify the number of write cycles for an EEPROM)                                                |  |  |  |  |  |
|                                         | Robust design of semiconductor packaging                                                                                                                                         |  |  |  |  |  |

# ASIL DECOMPOSITION

### **To Reduce Complexity**

Source: ISO 26262 2<sup>nd</sup> edition



ASIL decomposition:

 apportioning of redundant safety requirements to elements, with sufficient independence, conducing to the same safety goal, with the objective of reducing the ASIL of the redundant safety requirements that are allocated to the corresponding elements.

## **S/W SAFETY** Mainly focusing on avoiding systematic failures

Source: ISO 26262 2<sup>nd</sup> edition



Unit verification

| Table 6 - | Decign | nrincinle | s for sof | tware unit | design   | and imn | lomentation |
|-----------|--------|-----------|-----------|------------|----------|---------|-------------|
| Table 0 - | Design | principle | 5 101 501 | tware unit | . uesign | anu imp | lementation |

| Dringinle                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Principie                                                                                                                        | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| One entry and one exit point in subprograms and functions <sup>a</sup>                                                           | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No dynamic objects or variables, or else online test during their creation <sup>a</sup>                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Initialization of variables                                                                                                      | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No multiple use of variable names <sup>a</sup>                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Avoid global variables or else justify their usage <sup>a</sup>                                                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Restricted use of pointers <sup>a</sup>                                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No implicit type conversions <sup>a</sup>                                                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No hidden data flow or control flow                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No unconditional jumps <sup>a</sup>                                                                                              | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| No recursions                                                                                                                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based evelopment. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                  | Principle         One entry and one exit point in subprograms and functions <sup>a</sup> No dynamic objects or variables, or else online test during their creation <sup>a</sup> Initialization of variables         No multiple use of variable names <sup>a</sup> Avoid global variables or else justify their usage <sup>a</sup> Restricted use of pointers <sup>a</sup> No implicit type conversions <sup>a</sup> No hidden data flow or control flow         No recursions         Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling lopment. | PrincipleAOne entry and one exit point in subprograms and functionsa++No dynamic objects or variables, or else online test during their creationa+Initialization of variables++No multiple use of variable namesa++Avoid global variables or else justify their usagea+Restricted use of pointersa+No implicit type conversionsa+No hidden data flow or control flow+No recursions++No recursions++Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notation++ | PrincipleABOne entry and one exit point in subprograms and functions <sup>a</sup> ++++No dynamic objects or variables, or else online test during their creation <sup>a</sup> ++++Initialization of variables+++++No multiple use of variable names <sup>a</sup> ++++Avoid global variables or else justify their usage <sup>a</sup> ++++Restricted use of pointers <sup>a</sup> +++No implicit type conversions <sup>a</sup> +++No hidden data flow or control flow+++No recursions+++Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notationsused | PrincipleABCOne entry and one exit point in subprograms and functions <sup>a</sup> ++++++No dynamic objects or variables, or else online test during their creation <sup>a</sup> +++++Initialization of variables++++++No multiple use of variable names <sup>a</sup> ++++++Avoid global variables or else justify their usage <sup>a</sup> +++++Restricted use of pointers <sup>a</sup> +++++No implicit type conversions <sup>a</sup> +++++No hidden data flow or control flow+++++No recursions+++++Principles 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notationsundefinitional jumpsundefinitional jumps |  |  |  |  |  |

NOTE For the C language, MISRA C (see Reference [3]) covers many of the principles listed in Table 6.

## **TOOL SAFETY** Determining confidence in use of tools



|             |     | Tool error detection |      |      |  |
|-------------|-----|----------------------|------|------|--|
|             |     | TD1                  | TD2  | TD3  |  |
| Tool impact | TI1 | TCL1                 | TCL1 | TCL1 |  |
|             | TI2 | TCL1                 | TCL2 | TCL3 |  |

#### Table 4 — Qualification of software tools classified TCL3

|                                                                                                                                                                              | Mathada                                                                |    | ASIL |    |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----|------|----|----|--|
| Methods                                                                                                                                                                      |                                                                        | Α  | В    | С  | D  |  |
| 1a                                                                                                                                                                           | Increased confidence from use in accordance with <u>11.4.7</u>         | ++ | ++   | +  | +  |  |
| 1b                                                                                                                                                                           | Evaluation of the tool development process in accordance with $11.4.8$ | ++ | ++   | +  | +  |  |
| 1c                                                                                                                                                                           | Validation of the software tool in accordance with <u>11.4.9</u>       |    |      | ++ | ++ |  |
| 1d                                                                                                                                                                           | Development in accordance with a safety standard <sup>a</sup>          |    |      | ++ | ++ |  |
| <sup>a</sup> No safety standard is fully applicable to the development of software tools. Instead, a relevant subset of requirements of the safety standard can be selected. |                                                                        |    |      |    |    |  |
| EXAMPLE Development of the software tool in accordance with ISO 26262, IEC 61508, EN 50128 or RTCA DO-178C.                                                                  |                                                                        |    |      |    |    |  |

#### Table 5 — Qualification of software tools classified TCL2

| Mathada                                                                                                                                                                      |                                                                             | ASIL |    |    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|----|----|----|
| Methods                                                                                                                                                                      |                                                                             |      | В  | С  | D  |
| 1a                                                                                                                                                                           | Increased confidence from use in accordance with <u>11.4.7</u>              | ++   | ++ | ++ | +  |
| 1b                                                                                                                                                                           | Evaluation of the tool development process in accordance with <u>11.4.8</u> | ++   | ++ | ++ | +  |
| 1c                                                                                                                                                                           | Validation of the software tool in accordance with <u>11.4.9</u>            | +    | +  | +  | ++ |
| 1d                                                                                                                                                                           | 1d     Development in accordance with a safety standarda     +     +     +  |      |    |    | +  |
| <sup>a</sup> No safety standard is fully applicable to the development of software tools. Instead, a relevant subset of requirements of the safety standard can be selected. |                                                                             |      |    |    |    |
| EXAMPLE Development of the software tool in accordance with ISO 26262, IEC 61508, EN 50128 or RTCA DO-178C.                                                                  |                                                                             |      |    |    |    |

## SAFETY OF THE INTENDED FUNCTIONALITY ISO 21448 (a.k.a. SOTIF)

- Autonomous vehicles that rely on sensing can miss their goal and cause safety violations even in absence of H/W or S/W failures, due to:
  - Sensor limitations
  - Algorithm limitations
  - Actuator limitations



# SAFETY OF THE INTENDED FUNCTIONALITY

### ISO 21448 (a.k.a. SOTIF)

| Source                                                                              | Cause of hazardous event                                                                                                | Within scope of                                                                  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
|                                                                                     | E/E System failures                                                                                                     | ISO 26262 series                                                                 |  |  |
|                                                                                     | Performance limitations or insufficient situa-<br>tional awareness, with or without reasonably<br>foreseeable misuse    | ISO/PAS 21448                                                                    |  |  |
| G                                                                                   |                                                                                                                         | ISO/PAS 21448                                                                    |  |  |
| System                                                                              | Reasonably foreseeable misuse, incorrect HMI                                                                            | ISO 26262 series                                                                 |  |  |
|                                                                                     | (e.g. user confusion, user overload)                                                                                    | European statement of principal<br>on the design of human-ma-<br>chine-interface |  |  |
|                                                                                     | Hazards caused by the system technology                                                                                 | Specific standards                                                               |  |  |
|                                                                                     | successful attack exploiting vehicle security vulnerabilities                                                           | ISO 21434 <sup>a</sup> or SAE J3061                                              |  |  |
| External<br>factor                                                                  | Impact from active Infrastructure and/or vehi-<br>cle to vehicle communication, external devices<br>and cloud services. | ISO 20077 series; ISO 26262 series                                               |  |  |
|                                                                                     | Impact from car surroundings (other users,                                                                              | ISO/PAS 21448                                                                    |  |  |
|                                                                                     | tions: weather, Electro-Magnetic Interference)                                                                          | ISO 26262 series                                                                 |  |  |
| <sup>a</sup> Under preparation. Stage at the time of publication: ISO/SAE CD 21434. |                                                                                                                         |                                                                                  |  |  |

## SOTIF GOAL Known, Unknown, Safe and Unsafe



Known unsafe scenarios (Area 2)
 Known safe scenarios (Area 1)
 Unknown unsafe scenarios (Area 3)
 Unknown safe scenarios (Area 4)



 At the beginning of the development Areas 2 and Area 3 might be too large, resulting in unacceptable residual risk.

 The ultimate goal of the SOTIF activities to evaluate the SOTIF in Area 2 and Area 3 and to provide an argument that these areas are sufficiently small and therefore that the resulting residual risk is acceptable.

## ASSESSING THE SOTIF RISK OF HARM

### From scenarios to harm



## BREAKING DOWN THE COMPLEXITY

### Scene, Scenario, Situation



· Skills and abilities, e.g., field of view or occlusions

Actors'/observers' states and attributes

subjective scene)

38

## PUSHING VALIDATION TO ITS LIMIT End-to-end Testing and Validation



## DATA COLLECTION SOTIF Guidelines

| Time of day   |                   |            |  |  |  |
|---------------|-------------------|------------|--|--|--|
| Ту            | ре                | Percentage |  |  |  |
| D             | ay                | 50 %       |  |  |  |
| Nig           | ght               | 35 %       |  |  |  |
| Du            | ısk               | 15 %       |  |  |  |
| Vehicle Speed |                   |            |  |  |  |
| Speed [mi/h]  | Speed [km/h]      | Percentage |  |  |  |
| 0-25          | 0-40              | 60 %       |  |  |  |
| 26-50         | 41-80             | 40 %       |  |  |  |
| >50           | >80               | 0 %        |  |  |  |
|               | Weather condition |            |  |  |  |
| Туре          |                   | Percentage |  |  |  |
| Dry/Cl        | ear sky           | 65 %       |  |  |  |
| Rain          |                   | 7 %        |  |  |  |
| Fog           |                   | 5 %        |  |  |  |
| Snow          |                   | 5 %        |  |  |  |
| Overcast      |                   | 10 %       |  |  |  |
| Heavy rain    |                   | 5 %        |  |  |  |

- Continuous data collection, in different markets, weather and illumination conditions.
- Specific data collection, in conditions which are normally rare and less represented in normal driving but that might impact perception:
  - Vision perception data at dusk or dawn;
  - Lidar system adverse weather;
  - Radar system rain and splash conditions on salt spread roads;
  - All systems entering, exiting or within a tunnel.
- Specific data collection, in uncommon scenarios that might increase the likelihood of a safety violation, e.g. driving on roads with sparse traffic and no lead cars can increase the probability of failure of in-path target selection and detection of ghost targets.
- Specific data collection, based on system limitations.

## SOTIF MEASURES Example

Source: ISO/PAS 21448

|                      | Causal factor of hazard with example | Example of derived SOTIF measure                                                                                                                               |
|----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E/E System<br>Factor | E/E System performance limitation    | <ul> <li>Reduce the performance of the system and inform<br/>the driver and handover the authority to the driver.</li> <li>Gently stop the function</li> </ul> |
|                      |                                      | <ul> <li>Degrade and keep the function</li> </ul>                                                                                                              |
| Driver               | Reasonably foreseeable misuse        | Prevent inadvertent operation by the driver.                                                                                                                   |
| Factor               |                                      | • Monitor and warn the driver when an incorrect operation is detected.                                                                                         |

# **DNN SAFETY**

### **FUSA**

Correctness of DNN model implementation in SW

Correct software implementation of the deep learning framework

Ability to avoid or detect faults introduced by tools

Systematic issues in the training process

Vulnerability analysis of GPU

### SOTIF

Quality and completeness of the training

Quality and completeness of the verification and validation

# **AV SAFETY VALIDATION**

### The Challenges



Highly Complex System Large Computers, DNNs, Sensors

Real-Life Scenario Coverage Account for Rare & Unpredictable Cases

Continuous Reaction Loop Vehicle & World are Dependent

## THE AV VALIDATION GAP





COMPONENT LEVEL SIL Low Fidelity | Scalable ON ROAD TESTING High Fidelity | Doesn't Scale

No Coverage for Extreme & Dangerous Scenarios

# AV REQUIRES A COMPREHENSIVE VALIDATION APPROACH

End-to-End System Level Test

Large Scale | Millions of Miles

Diverse Vehicle and World Conditions

Data Driven | Scenario based

Repeatable and Reproducible











## VIRTUAL TEST FLEET IN THE CLOUD



Simulate previous failure scenarios | Cloud-based workflow | Open platform



# HARDWARE IN THE LOOP SIMULATION

### Bit Accurate & Timing Accurate







CONTROL Steering | Throttle | Brake

## **BEYOND VALIDATION** The Need for Formal Models and Methods

- Industry recognized that validation, despite essential to provide safety of automated vehicles, per se is not enough.
- It is necessary to combine validation with an overarching theory (and related mechanisms) for mapping world perception into constraints on control that, if obeyed, prevents "all" collisions.
- Those mechanisms should, as much as possible, function independently of the full complexity of software required to obey all traffic rules and rules courteously.
- NVIDIA outlined a safety driving policy known as "Safety Force Field", or SFF.
- SFF consists of "forces" acting on every actor (including my car) so that collisions between any two actors are avoided.

# SFF IN A NUTSHELL

## Details: <a href="http://www.nvidia.com/en-us/self-driving-cars/safety-force-field/">www.nvidia.com/en-us/self-driving-cars/safety-force-field/</a>

- SFF is built on a simple single core safety principle rather than a complex set of case-bycase rules, which can get unwieldy to implement and validate.
  - Example: the safety procedure is a requirement to decelerate at least as much as a certain amount (dark green). There is also a maximum braking schedule (orange).



# SAFETY DEPENDS ON OTHER ACTORS

### It is Not Possible to Guarantee Absence of Collisions Regardless of What Other Actors Do



The vehicle in the middle has nowhere to go if its lead vehicle decides to brake and the following vehicle continues to accelerate. The situation is the same in two dimensions since other vehicles may be blocking the sides. We could ask that we be stopped before a collision occurs but would then be unable to drive at speed on a congested highway....

# **COLLABORATING FOR SAFETY**

Both Actors have to Apply their Safety Procedures



In the case of two oncoming cars, the minimal constraint is that both actors have to apply their safety procedures just before they are about to overlap.

> The case of one car following another also becomes critical exactly when the claimed sets intersect. At that moment, the following car has to apply its safety procedure, while the front car has no constraint other than staying ahead of maximum deceleration.

# LATERAL AND LONGITUDINAL

### The longitudinal and lateral dimensions shall be handled jointly



An approach that looks at longitudinal and lateral safety margins separately cannot allow the case of pushing diagonally into a lane at low speed. The reason is that at high congestion, we cannot expect to longitudinally clear the vehicle we want to take way from before we are partially in its lateral path.

SFF naturally allows making way into a congested lane at slow speed as can be required in congested highway situations. This is not possible with a formulation that separates lateral and longitudinal distances and requires at least one of them to be acceptable. Note that in this situation, the ego vehicle (green) is neither laterally nor longitudinally clear from the car behind it to the left.

# THE MATHEMATICAL MODEL BEHIND

Details: <a href="http://www.nvidia.com/en-us/self-driving-cars/safety-force-field/">www.nvidia.com/en-us/self-driving-cars/safety-force-field/</a>

**Definition 1**: The state of actor A is a vector  $x_A(t) \in \mathbb{R}^m$  as a function of time that encodes the properties of actor A at time t. When viewed as a function of time, we refer to it as the state trajectory of actor A.

**Definition 2**: The set  $\Omega$  is the collection of the state spaces of all actors we consider, including static obstacles.

**Definition 3**: A control model  $f(x_A, t, c)$  for actor A is a function f of the state  $x_A$  of the actor, time t, and control parameters c into  $\mathbb{R}^m$ .

**Definition 12**: A safe control policy  $\frac{dx_A}{dt}$  for actor A with respect to a set  $\Theta \subseteq \Omega$  of actors is one for which  $F_{AB} \frac{dx_A}{dt} \ge \min_{s_A \in S_A} F_{AB} s_A$  for each other actor  $B \in \Theta$ .

# **POWERING THE AI REVOLUTION**

## Fusing HPC and AI computing into one unified architecture





**Machines** 



NEW DGX2 2 PFLOPS | 512GB HBM2 | 10 kW NEW HGX2 2 PFLOPS NEW DRIVE™ Pegasus 320 TOPS | 2x Xavier + 2x Next Gen GPU ISAAC Robotic platform JETSON Xavier DevKit

## **IEEE INITIATIVES**



#### www.computer.org/communities/spec ial-technical-communities/rsstdis



